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Random sequential adsorption on a 3 X a, lattice: 
an exact solution 
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Abstract The dynamics of a random sequential adsorption process on a quasi-one 
dimensional lattice with three rows is solved exactly. The long-time behaviour of the cover- 
age density is p(r)=f-Zexpl-(f+t)]/9. It is shown that the number of connected lattice 
animals increases‘like n!”’, indicating that most two-dimensional lattice animals are non- 
compact. 

Random sequential adsorption (RSA) is an irreversible random deposition process. In 
its simplest form particles interacting via a short-range hard core repulsion are absorbed 
randomly, one at a time, into a d-dimensional space. The adsorbed particles obey the 
following conditions: (i) particles do not overlap; (ii) absorbed particles are perman- 
ently fixed in their spatial position. Thus at each step a new particle is either rejected 
from the volume, or it is added at random at an accessible point in the diminished 
volume formed by all previously adsorbed particles. The deposition process ceases when 
all unoccupied spaces are smaller than the size of an adsorbed particle. The system is 
then jammed in a non-equilibrium state, whose average density pr is clearly expected 
to be smaller than the corresponding density of closest packing po. A variety of physical, 
chemical, biological and ecological irreversible processes are described by RSA models 
[l]. Furthermore, since the RSA phase is a non-equilibrium disordered phase for all 
values of p, it has been suggested as a phenomenological model for glasses and super- 
cooled liquids [Z]. 

Exact solutions for RSA models are available only for one-dimensional systems [3- 
61. Recently, an exact solution was obtained for the RSA process with mutual nearest- 
neighbour (NN) exclusion on a quasi-onedimensional lattice, consisting of a strip of 
two infinite rows (2 x Q)) [7,8]. The filling process on this lattice exhibits some features 
typical of two-dimensional systems. In addition, the solution indicates that the number 
of lattice animals, consisting of n connected points, increases like fl, in sharp contrast 
to the characteristic exponential dependence of the d= 1 system. The dependence of 
these properties on the width of the strip is an interesting question. Therefore in this 
paper we extend the methods of [8] to obtain an exact solution for RSA on a lattice 
strip consisting of three infinite rows (3 x CO). 
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Let si be a two-state occupation variable defined as 1 in case site i is empty and 0 
in case it is occupied. It has been shown [9] that the nth derivative of the ensemble 
average (s i )  with respect to u=exp(-t) at U =  1 ( t = O )  is given by a sum of all possible 
combinations of n points connected lattice animals (provided the lattice is empty at f =  
0, more general initial conditions may be implemented as well). The connectivity range 
between lattice sites is determined by the range of the hard core repulsion. It is worth- 
while to mention that time derivatives of (si) are redundant. since they are given by a 
sum of all combinations of n step paths, including paths that visit a point more than 
once. Therefore U is the natural time variable for RSA on lattices. As a result, macro- 
scopic observables are given by expansions in powers of (1 - U), in particular the density 
is given by 

p(t) = 1 - (s i>= (-l)'"-')an(l -u)"/n! . (1) 
" - 1  

The coefficients a,, are positive integers which are equal to the number of connected 
lattice animals containing n points, and their computation reduces to an enumeration 
problem. 

The enumeration process of [9] simplifies considerabiy on quasi-one-dimensional 
lattices, since the number of boundary points at each step is independent of n. In the 
d= 1 case with NN exclusion there is a single generating configuration resulting in the 
simple recursion relation a.=2an-, . Similarly, the enumeration on the 2 x ~1 strip with 
NN exclusion, described in [SI, has three characteristic configurations, resulting in an 
exact solution of the problem. On the 3 x 00 strip of a square lattice, with mutual NN 
exclusion and periodic boundary conditions, the time evolution (enumeration process) 
has six characteristic generating configurations: 

An(O,  0, U) = n st.isZis3.i (24 

A&, k, U) = 0, 4 ~ 1 . 0  . . . WI,+ I . . . SK."+ 1 with O<j<k<2. 126) 

coupled differential equations: 

i- I 

The time evolution of the generators is given by the close set of six n-independent 

dA(O,O)/du=6A(O, 1) ( 3 4  
dA(0, I)/du=2A(O, 2)+3A(1, l)+dA(O, 1) ( 3 4  
dA(O,2)/du=A(O, 0) +3A(1,2) +2uA(O, 1) (34 

&(I ,  I)/du=4A(1,2)+2dA(l, 1) ( 3 4  
dA( 1,2)/du = A(0,l) + 2A(2,2) + 2uA( 1, l )  + d A (  1,2) (34 

dA(2,2)/du=2A(O,2)+4uA(1,2) (3f) 
with the initial conditions A( j, k, U= 2 )  = 1 for all j and k. 

under which the A( j, k, U) transform covariantly, it is easy to see that the solution is 
Utilizing the C, symmetry of the set of equations, i.e. U -+ exp(2sin/3)u, n=O, 1, 2 

A(O,O)=u4f(u) 

A(0,  1)= (2u3+u6)f(u)/3 

A(O,2) = (uz+Zd)f(u)/3 
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A( 1 , l )  = (4u2+4u5+ u8)f(u)/9 W) 
A (1,2) = (2u + 5 0  + 2u7)f(u)/9 

A(2,2)= (1 + 4 3  +4U6)f(U)/9 
wheref(u) =exp[2(3 - 1)/3]. Each of the polynomials of equations (4) has a character- 
istic power, modulo 3, reflecting the C, symmetry of the problem. We recall that the 
set of three coupled differential equations on the 2 x Q) lattice possesses Cz symmetry, 
resulting in a qualitatively similar solution with a common exponential factorf(u) = 
exp(u2- 1) 181. 

The coverage density p(u) is given by 
I 

p(u) = (1  -U) - (1 -u)2-2 fu' dv Jo dyA(1, LY) 

+ 2 ~ ~ 1 d v ~ " ' d y ~ ~ ' d r [ A ( 0 , 0 , x ) + 4 A ( 1 , 2 , r ) l .  (5) 

The long-time behaviour of the density is easily evaluated as a series in U: 
p(u)  = f - CI U - c2u2 - O ( J )  (6 )  

where 
cI =2f(0)/9=0.114 092 69. . . 

/9=0.093 563 227 7 . .  . 

The jamming density p,=p,,=f. The source of this unusual equality and unusual low 
value of PO is the compatibility between the range of the interaction and the width of 
the lattice. It imposes abnormally strong correlations along columns, resulting in the 
occupation of one particle per column. At the u=O limit every column is occupied with 
one particle, and p,=f. It is worthwhile mentioning that p, is well below the two- 
dimensional value pr(d=2)=0.364 13 (1) [9, IO]. In figure I the exact time evolution 

1 

Figure 1. The exact time evolution of the coverage density p(u) (continuous line) is shown 
as a function of ( I  -U). The long-time approximation of equation (6) A bounds the exact 
values from above for all U. 
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is compared to the long-time approximation equation (6): The approximation bounds 
the exact values from above, and for u<O.5, i.e. tb0.69, the errors do not exceed 2%. 

The expansion coefficients a. of equation (1) are related to the coefficients A,,(j, k )  
(the nth derivative of A ( j ,  k, U) at U =  1) by 

(7) 
The n dependence of the coefficients is determined by the power of U inf(u), resulting 
in an asymptotic increase of the forn iz!"'; clearly, the ad have the same n dependence. 
Since the number of connected lattice animals on the d=2 square lattice is greater than 
their number on the 3 x ca lattice, the result above is a lower bound for their number. 
This lower bound excludes the possibility that most of the lattice animals are compact 
with few interior vacancies and smooth perimeters. A growth process of compact lattice 
animals is determined by the number of sites on the perimeter, resulting in an n!"' 
dependence. 

Unfortunately, it is difficult to extend the present method to a 4 x m strip, since the 
time evolution (enumeration process) is determined by an infinite set of generators. 
The jump to infinity in the number of the generators results from the fact that the 
lattice width becomes bigger than the exclusion range of the NN hard core repulsion. 
Thus, lattice sites along the direction of the width of the lattice are no longer necessarily 
topologically equivalent. The enumeration process depends therefore on the details of 
the distribution of the occupations along this direction, resulting in an infinite number 
of generators. Nevertheless, one may construct an RSA process with an anisotropic 
exclusion, whose time evolution is given by a finite set of generators. Consider an RSA 

filling process on an m x m strip with NN exclusion along the infinite direction and 
(m- 1) neighbour exclusion along the width of the strip. The filling process of this 
artificial model obviously ends at a state that contains one particle at each column, 
resulting in pr= PO= I /m (m 2 3). But the time evolution has some interesting features. 
It is described by a set of m(m+ 1)/2 coupled differential equations of the same form 
as equation (3). The solutions which possess a C,,, symmetry are similar to the solutions 
equations (4), i.e. polynomials with a characteristic power modulo m, multiplied by a 
common exponentf(u) =exp(2(u"- l)/m). In particular the A(0,O) generalized gener- 
ator is given by 

Random sequential adsorption on a 3 x m lattice 

=2A.(O, 0) + 16A,( 1,2) + 4[A,( I ,  1) +n(2An-,(  1, 1) + (n - 1)An-*( 1, l))]. 

A(0, O)=rl"-Y(u) (8 )  
It is easily seen that the number of connected lattice animals increases asymptotically 
like n!("-')/m . The set of n points connected lattice animals due to an NN isotropic 
exclusion is, for all n, a subset of the set of connected lattice animals of the artificial 
model whose interaction range in the lattice width direction exceeds the NN range. 
Therefore the value above is an upper bound to the number of connected lattice animals 
formed on an m X CO lattice in the case of an NN interaction. Thus the number of 
connected lattice animals on the d = 2  lattice is bound from below by n!2'3 and by n! 
from above. Numerical analysis of the coefficients a.(d=2) [9, 1 I] suggests that it is 
very likely that the exact behaviour is given by the upper bound. 
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